

News and Idiosyncratic Volatility: The Public Information Processing Hypothesis*

Robert F. Engle¹, Martin Klint Hansen², Ahmet K. Karagozoglu³ and Asger Lunde⁴

¹New York University, ²Novo Nordisk, ³Hofstra University; New York University and ⁴CREATES, Aarhus University

Address correspondence to Asger Lunde, Professor of Economics, Department of Economics and Business, Aarhus University, Fuglsangs Allé 4, 8210 Aarhus V, Denmark, or e-mail: alunde@econ.au.dk.

Received September 4, 2019; revised August 22, 2020; editorial decision September 15, 2020; accepted October 1, 2020

Abstract

Motivated by the recent availability of extensive electronic news databases and advent of new empirical methods, there has been renewed interest in investigating the impact of financial news on market outcomes for individual stocks. We develop the information processing hypothesis of return volatility to investigate the relation between firm-specific news and volatility. We propose a novel dynamic econometric specification and test it using time series regressions employing a machine learning model selection procedure. Our empirical results are based on a comprehensive dataset comprised of more than 3 million news items for a sample of 28 large U.S. companies. Our proposed econometric specification for firm-specific return volatility is a simple mixture model with two components: public information and private processing of public information. The public information processing component is defined by the contemporaneous relation with public information and volatility, while the private processing of public information component is specified as a

* This article was previously circulated under the title “And Now, The Rest of the News: Volatility and Firm Specific News Arrival.” We thank René Garcia, the Editor, and two anonymous referees for their helpful comments. We are grateful to Torben Andersen, Tim Bollerslev, Christian Brownlees, Nikolaus Hautsch, Yu Jun, Andrew Patton, Peter Phillips, Kevin Sheppard, and Carsten Tanggaard for helpful discussions. We are also thankful for helpful comments received at the HUKU 2011 conference in Copenhagen, and at seminars at CRESTES, Copenhagen Business School and Duke University Singapore Management University, Brunel University, Lancaster University and at the 2015 ERM seminar at Erasmus University Rotterdam. Earlier version of this article was completed while the second author was at Aarhus University. Engle thanks the Volatility and Risk Institute at NYU and its sponsors NSF (#2018923) and NBIM (S0611 - A Financial Approach to Climate Risk 2019-06-12) for financial and intellectual support. Hansen acknowledges financial support from the Bikuben, Oticon, and Tuborg foundations. Hansen and Lunde acknowledge financial support from the Center for Research in Econometric Analysis of Time Series, CRESTES, funded by the Danish National Research Foundation. Karagozoglu acknowledges the special research leave afforded by Hofstra University. All errors are ours.